Magazines

Subscribe to our print & digital magazines now

Subscribe

Harvest 38 litres of Water From Air by a Portable Device

In view of the scarcity of water, which is life line of the lives of species and the agriculture. We cannot produce water but can conserve the same. Rain water harvesting is one of the solutions. The University of Akron in Ohio has developed the gadget to access the fresh, clean drinking water from the air itself. The prototype developed by the scientists can harvest the water in the tune of 10 gallons per hour. By this development the future problem of the humanity seems to be has been solved. It is the pressing issues of the future from where to get the water! The amount of water vapor present in the atmosphere is referred to as humidity. In tropical regions with high relative humidity - the percentage of water vapor in the air as a function of the temperature - it's pretty easy to use devices called fog catchers to turn that water vapor into drinkable water.

Updated on: 27 August, 2018 5:03 AM IST By: Chander Mohan

In view of  the scarcity of water, which is life line of the lives of species and  the agriculture. We cannot produce water but can conserve the same. Rain water harvesting is one of the solutions. The University of Akron in Ohio has developed the gadget to access the fresh, clean drinking water from the air itself. The prototype developed by the scientists can harvest the water in the tune of 10 gallons per hour. By this development the future problem of the humanity  seems to be has been solved. It is the pressing issues of the future from where to get the water!

The amount of water vapor present in the atmosphere is referred to as humidity. In tropical regions with high relative humidity - the percentage of water vapor in the air as a function of the temperature - it's pretty easy to use devices called fog catchers to turn that water vapor into drinkable water. 

But in drier places like California or the Andes, fog catchers are rendered "ineffective," according to Wong. And, though countries like Israel have been experimenting with desalination, Wong said the process is too expensive to be deployed at scale, particularly as water shortages become more acute in poorer regions as the world warms as a result of climate change. 

To develop a water harvester, the team took inspiration from both biology and history. Every human should be entitled to fresh water," Dr. Josh Wong, a professor of mechanical engineering at the University of Akron, told Business Insider. "Not just the 0.1%" 
That notion spurred Wong - an expert in polymers - to work on a water harvester prototype that can be cheaply and effectively used in regions where water is scarce. 

Many people will suffer from water shortages around the world in the coming years," Wong said. "We're hoping we can address this problem.


The atmosphere is one of the most abundant sources of water we have. Just look at your local weather forecast or the hurricane bearing down on Hawaii," Wong said. "We haven't fully explored it."  Wong pointed out that indigenous communities in the Andes mountains - high altitude deserts where it rains infrequently - have used techniques to capture atmospheric water for centuries. Historically, these communities would collect dew inside pits located in the desert. In the morning, they'd collect the dew and channel it into large cisterns, providing them with fresh drinking water.  The Namib Desert Beetle also served as an inspiration. These beetles, which live in some of the driest deserts on Earth, have bodies that are adapted for water collection. To drink, they simply climb up to the highest point - say, a sand dune - and point their abdomens towards the wind.  The wind, which blows off the ocean and carries water particles, condenses on their bodies. They have special grooves to channel the condensation into their mouths.  Wong and his team set out to "miniaturize," the process of harvesting atmospheric water using electrospun polymers. 

Electrospinning can produce polymers as small as a few tens of nanometers across, which means that a huge surface area can be packed into a really small space. That makes the nanoscale-polymers super-efficient at collecting water, even in arid environments. The device, which could be powered by a lithium-ion battery, would also be able to filter water because the surface  of the material would slough off any microbes or bacteria present in the water vapor.

While that may seem complicated, Wong said it's not much different than how people in the Andes, and Namib beetles collect water - it's just at a much smaller scale.

While other researchers have worked on developing water harvesters, Wong said his concept would be smaller and cheaper, and therefore the easiest to scale than other research-stage water harvester prototypes. It could take the form of a backpack, or even be placed onto a rolling train where the water could be collected and delivered to communities. 
He presented his findings at a meeting of the American Chemical Society earlier this week, and his team is seeking funding to develop a working prototype for the project. 

Test Your Knowledge on International Day for Biosphere Reserves Quiz. Take a quiz